Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Even in response to simple tasks such as hand movement, human brain activity shows remarkable inter-subject variability. Recently, it has been shown that individual spatial variability in fMRI task responses can be predicted from measurements collected at rest; suggesting that the spatial variability is a stable feature, inherent to the individual's brain. However, it is not clear if this is also true for individual variability in the spatio-spectral content of oscillatory brain activity. Here, we show using MEG (N ​= ​89) that we can predict the spatial and spectral content of an individual's task response using features estimated from the individual's resting MEG data. This works by learning when transient spectral 'bursts' or events in the resting state tend to reoccur in the task responses. We applied our method to motor, working memory and language comprehension tasks. All task conditions were predicted significantly above chance. Finally, we found a systematic relationship between genetic similarity (e.g. unrelated subjects vs. twins) and predictability. Our approach can predict individual differences in brain activity and suggests a link between transient spectral events in task and rest that can be captured at the level of individuals.

Original publication

DOI

10.1016/j.neuroimage.2020.116818

Type

Journal

Neuroimage

Publication Date

07/04/2020

Volume

215

Keywords

Brain oscillations, Bursts, Hidden-markov-modelling, Individual variability, Resting state, Transient events